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The solution of the Enskog equation for the one-body velocity distribution of a moderately dense arbitrary
mixture of inelastic hard spheres undergoing planar shear flow is described. A generalization of the Grad
moment method, implemented by means of a novel generating function technique, is used so as to avoid any
assumptions concerning the size of the shear rate. The result is illustrated by using it to calculate the pressure,
normal stresses, and shear viscosity of a model polydisperse granular fluid in which grain size, mass, and
coefficient of restitution vary among the grains. The results are compared to a numerical solution of the Enskog
equation as well as molecular-dynamics simulations. Most bulk properties are well described by the Enskog
theory and it is shown that the generalized moment method is more accurate than the simple(Grad) moment
method. However, the description of the distribution of temperatures in the mixture predicted by Enskog theory
does not compare well to simulation, even at relatively modest densities.
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INTRODUCTION

Granular systems under rapid flow can be modeled as a
fluid of inelastic hard spheres for which a variety of theoret-
ical and simulation methods may be use to explore and un-
derstand the rich phenomenology that they exhibit[1–3]. Of
particular interest are sheared granular flows, in which the
velocity in the direction of flow varies with position in an
orthogonal direction, due to their practical relevance, acces-
sibility to experiment, and theoretical elegance. For a steady
rate of shearing, such systems typically reach a steady state
in which viscous heating, due to the shear, balances colli-
sional cooling, due to the inelastic collisions, thus giving an
example of a steady-state nonequilibrium system. A number
of papers have discussed the rheology of single-component
sheared granular fluids[4–7] in which all particles are me-
chanically identical. However, all real fluids can be expected
to contain a distribution of particle sizes and degrees of in-
elasticity. The purpose of this paper is to extend these studies
to dense fluids composed of an arbitrary mixture of particle
sizes and inelasticities.

The usual model for granular fluids consists of hard
spheres which lose energy when they collide. Different mod-
els for the energy loss are possible, and here, attention will
be restricted to the simplest case in which the energy loss is
proportional to the contribution to the kinetic energy of the
normal velocities in the rest frame. This model is amenable
to the same theoretical tools used to study elastic hard-sphere
systems provided that attention is resticted to conditions in
which only binary collisions occur. Granular systems exhib-
iting solidlike behavior must therefore be excluded from
consideration. Then, it is possible to construct the exact
Liouville equation describing the time evolution of the
N-body distribution function[8–10] from which the Enskog
and Boltzmann approximate kinetic equations follow. The

latter are closed equations for the one-body distribution: the
Enskog equation involves only the assumption of “molecular
chaos” [11,12], while the Boltzmann equation is its low-
density limit. One of the attractions of the hard-sphere mod-
els is the existence of the Enskog equation, which allows for
the description of finite density fluids outside the domain of
the validity of the Boltzmann equation. Since one of the
purposes of the present work is to provide a foundation for
the study of transport properties in realistic systems, the En-
skog equation is used as a starting point. The price paid for
this is that the results obtained must be evaluated numeri-
cally, but as discussed below, it is always possible, and quite
trivial, to take the Boltzmann limit of the final expressions
and to thereby proceed analytically in this special case.

The specific state studied here is that of uniform shear
flow in which the flow is described by a velocity fieldvWsrWd
=aJ·rJ=ayx̂, wherea is the shear rate. As discussed below,
this flow admits of a uniform state with spatially constant
density and temperature. The shear rate, temperature, and
degree of inelasticity are related in the steady state by the
requirement that the viscous heating and collisional cooling
balance. Although the Enskog equation could be solved per-
turbatively in the shear rate, it is difficult to carry out the
expansion to sufficiently high order to describe physically
interesting effects such as normal stresses and shear thinning
(although see Ref.[5], where this is done for the Boltzmann
equation). It is instead simpler to use a moment method with-
out making any assumptions about the smallness of the shear
rate as has been done for elastic hard spheres[13,14] and for
the Boltzmann equation for sheared binary fluids[15]. A
similar method that has been used is the so-called “general-
ized Maxwellian” of Chou and Richman[6,7]. In fact, as
shown below, these two methods can actually be viewed as
special cases of a generalized moment expansion about an
arbitrary Gaussian state.

An objection to using the moment method with the En-
skog equation is that the calculations are technically difficult.
In particular, the collision integrals which occur in the study*Electronic address: jlutsko@ulb.ac.be
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of sheared fluids can be challenging to evaluate even in the
case of the simpler Boltzmann theory(see, e.g., Ref.[15]).
One contribution of this work is to present a generating func-
tion technique which greatly simplifies the calculations. It is
shown that all integrals of interest can be obtained by differ-
entiating and taking appropriate limits of a single generating
function which itself simply involves the evaluation of a few
Gaussian integrals. With this technique, it is straightforward
to evaluate all results for the most general case of differing
particle sizes and coefficients of restitution inD dimensions.
The final results in fact turn out to be as simple in structure
as the equivalent model of sheared single-component elastic
hard spheres[13,14].

A question which has aroused considerable interest is the
degree to which mean-field theories, such as the Enskog-
Boltzmann kinetic theory, are applicable to granular systems
[16]. This provides another reason for studying the particular
case of USF as it is possible to simulate USF with the use of
modified periodic boundaries by means of the Lees-Edwards
simulation technique[17] so as to compare the approximate
kinetic theory to numerical experiments. Furthermore, the
Enskog equation may be solved numerically by means of the
direct simulation Monte Carlo(DSMC) method[18]. Both
methods are used here in order to elucidate the accuracy of
the analytic calculations as a method of solving the Enskog
equation and of the Enskog approximation itself compared to
simulation.

The organization of this paper is as follows. In Sec. II, the
Enskog theory is reviewed and the moment method for solv-
ing it is presented. It is shown how the moment method can
be extended to allow for an arbitrary Gaussian reference state
and the generating function formalism is introduced. The
lowest nontrivial moment solutions of the Enskog equation
are then described and used to calculate the pressure tensor
for USF, which thus describes the pressure, normal stresses,
and shear viscosity of the fluid in the steady state. In Sec. III,
the solution of the moment equations is compared to DSMC
and MD results for a model polydisperse fluid for a range of
applied shear rates. The generalized moment method is
shown to be superior to the simple(Grad) moment method
and the Enskog theory is shown to give a good description of
many rheological properties over a wide range of densities.
However, the description of the distribution of temperatures
as a function of grain size is shown to be poor, raising ques-
tions as to the accuracy of Enskog theory. The paper con-
cludes with a discussion of the use and applicability of the
results.

I. THEORY

A. Enskog approximation

Consider a system ofN grains which are modeled as hard
spheres. Each sphere is described by a position,qW, velocity,
vW, and a species labelr. A grain of speciesr has massmr
while two grains of speciesr and s collide when they are
separated by a distancesrs. This array of hard-sphere diam-
eters may be specified arbitrarily but an important special
case is that of additive hard-sphere diameters wherein each
species has a fixed diametersr and srs= 1

2ssr +ssd. When

grains i and j collide, their relative velocity after collision,
vW i j8 =vW i8−vW j8, is given by

vW i j8 = vW i j − s1 + arir j
dq̂ijsq̂ij ·vW i jd, s1d

wherears is the coefficient of restitution for collisions be-
tween grains of speciesr ands. The collisions are elastic if
ars=1 while ars,1 leads to an irreversible loss of energy in
each collision. Between collisions, the grains stream freely
so that their velocities are constant. This model is a particular
case of endothermic hard-sphere collisions in which the en-
ergy loss is proportional to the kinetic energy along the line
of collision in the rest frame Eij8 −Eij

=−s1−arir j

2 d 1
2mrir j

sq̂ij ·vW i jd2 where the reduced mass ismrs

=mrms/ smr +msd. Finally, it is useful to define the momen-
tum exchange operator for any function of the relative ve-
locities gsvW i jd as

b̂ijgsvW i jd = gsvW i j8 d = gfvW i j − s1 + arir j
dq̂ijsq̂ij ·vW i jdg s2d

and all other velocities are left unchanged. Its inverse is

b̂ij
−1gsvW i jd = gSvW i j −

1 + arir j

arir j

q̂i jsq̂ij ·vW i jdD . s3d

The statistical properties of the system are determined by
one- and two-body distribution functionsf rsqW ,vW ; td and
f r1r2

sqW1,vW1;qW2,vW2; td, respectively. The former gives the prob-
ability density of finding a grain of speciesr with the given
position and velocity at timet and the latter gives the joint
probability for two grains. The one-body distribution satisfies
an exact equation[the first of the Born-Bogoliubov-Green-
Kirkwood-Yvon (BBGKY) hierarchy]

S ]

] t
+ vW1 ·

]

] qW1
D f r1

sqW1,vW1;td

= − o
r1

E dqW2dvW2T̄−s12df r1r2
sqW1,vW1;qW2,vW2;td, s4d

where the binary collision operator is

T̄−si j d = − dsqij − srir j
dF 1

arir j

b̂i j
−1 − 1GQs− vW i j · q̂ijdvW i j · q̂ij ,

s5d

whereQsxd=1 if x.0 and 0 otherwise. A similar equation
relates the two-body distribution to the three-body distribu-
tion, and so on. The Enskog approximation results from not-
ing that the combination dsq12−sr1r2

dQs−vW12·q̂12d
f r1r2

sqW1,vW1;qW2,vW2; td picks out the precollisional part of the
distribution and assuming that,prior to collision and at the
moment of contact, the grains are uncorrelated. The specific
assumption is that

dsq12 − sr1r2
dQs− vW12 · q̂12df r1r2

sqW1,vW1;qW2,vW2;td

. dsq12 − sr1r2
dQs− vW12 · q̂12df r1

sqW1,vW1;td

3f r2
sqW2,vW2;tdxr1r2

sqW1,qW2;td, s6d

where the termxr1r2
sqW1,qW2; td, the spatial pair distribution
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function (pdf), accounts for spatial correlations as exist even
in equilibrium. If it is taken to be the local-equilibrium func-
tional of the nonequilibrium densities, then the approxima-
tion is completely specified and is known as the generalized
Enskog approximation[19].

B. Hydrodynamic fields

The local hydrodynamic fields of partial number densities
nrsqW ,td, local velocityuWsqW ,td, and temperatureTsqW ,td are de-
fined as

nrsqW,td =E dvW f rsqW,vW ;td,

rsqW,tduWsqW,td = o
r
E dvW mrvW f rsqW,vW ;td,

D

2
kBTsqW,td = o

r
E dvW

1

2
mrv

2f rsqW,vW ;td, s7d

wherersqW ,td=ormrnrsqW ,td is the total mass density,D is the
dimensionality of the system, andkB is Boltzmann’s con-
stant. The exact time evolution of these fields follows from
Eq. (4), which gives[10]

]

] t
nr + ¹W · suWnrd + ¹W · jWr

K = 0,

]

] t
uW + uW ·¹W uW + r−1¹W · PJ = 0,

S ]

] t
+ uW ·¹W DT −

T

n
¹W ·o

l

jWl
K +

2

DnkB
fPJ:¹W uW + ¹W ·qWg =

2

DnkB
j

s8d

with the number current

jWr
K =E dvW1f rsrW,vW1,tdVW 1, s9d

whereVW 1=vW1−uWsqW1,td, the pressure tensorPJ=PJK+PJV with
kinetic and collisional contributions

PJKsrW,td = o
r

mr E dvW1f rsrW,vW1,tdVW 1VW 1,

PJVsrW,td =
1

4o
r1r2

mr1r2
s1 + ar1r2

d E dx1dx2q̂12qW12sq̂12 ·vW12d2

3dsq12 − sr1r2
dQs− q̂12 ·vW12df r1r2

sx1,x2;td

3E
0

1

dx d„rW − xqW1 − s1 − xdqW2…, s10d

the heat flux vectorqW =qWK+qWV+qWdE with

qWKsrW,td = o
r

1

2
mr E dvW1f rsrW,vW1,tdVW 1V1

2,

qWVsrW,td =
1

2o
r1r2

mr1r2
s1 + ar1r2

d E dx1dx2qW12sq̂12 ·vW12d2

3dsq12 − sr1r2
dQs− q̂12 ·vW12df r1r2

sx1,x2;td

3fVW − uWsqW1,tdg · q̂12E
0

1

dx d„rW − xqW1 − s1 − xdqW2…,

qWdEsrW,td = −
1

4o
r1r2

s1 − arir j

2 d
1

2
mr1r2

mr1
− mr2

mr1
+ mr2

3E dx1dx2qW12sq̂12 ·vW12d3dsq12 − sr1r2
d

3Qs− q̂12 ·vW12df r1r2
sx1,x2;td

3E
0

1

dx d„rW − xqW1 − s1 − xdqW2…, s11d

where the center-of-mass velocityVW =smr1
vW1+mr2

vW2d / smr1
+mr2

d and the energy sink term

jsrW,td =
1

4o
r1r2

s1 − arir j

2 dmr1r2E dx1dx2sqW12 ·vW12d3

3dsq12 − sr1r2
dQs− q̂12 ·vW12df r1r2

sx1,x2;tddsrW − qW1d.

s12d

Using the approximation given in Eq.(6) gives expressions
for the fluxes and the heat sink which only require knowl-
edge of the one-body distribution function.

C. Uniform shear flow

The Enskog equation is indeterminate until some bound-
ary condition is specified. If periodic boundary conditions
are imposed, then it is easy to see that the Enskog equation
admits of a spatially homogeneous solution which is, how-
ever, time-dependent due to the cooling resulting from the
dissipative collisions. This is the well known homogeneous
cooling state(HCS). Uniform shear flow(USF) is another
simple nonequilibrium state supported by this system. In
USF, the density and temperature are spatially homogeneous
while the velocity field varies linearly with position, viz.,
uWsrWd=aJ· rW, where the shear tensor,aJ, will be taken to beax̂ŷ
in a Cartesian coordinate system. There is therefore a flow in
the x direction which varies linearly in they direction. We
hypothesize that in this case the distribution will only depend

on the peculiar velocityf rsqW ,vW ; td= f rsVW =vW −aJ·qW ; td. The En-
skog equation then becomes

S ]

] t
− VW 1 ·aJ T ·

]

] VW 1
D f r1

sVW 1;td

= − o
r2

E dqW2dvW2T̄−s12df r1
sVW 1;tdf r2

sVW 2;tdxr1r2
sqW1,qW2;td.

s13d

In fact, the linear flow field is the only one that makes the
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collisional term on the right independent of position as fol-
lows from the observation that it will be independent of po-
sition only if uWsqW1d−uWsqW2d is a function ofqW12. [The function
xr1r2

sqW1,qW2; td, evaluated in the local equilibrium approxima-
tion, will only depend onqW12 if the density is uniform.] In

fact, the requirement thatuWsqW1d−uWsqW2d=UW sqW12d for some field

UW sqW12d is only satisfied forUW sqW12d=uWsqW12d (demonstrated by

takingqW2=0W). One must also have thatuWsqW1d is odd, as shown
by reversing the arguments, and thatuWfsp/qdqW1g
=sp/qduWsqW1d, for arbitrary integersp and q, as follows by
iterating withqW2=−qW1. The only continuous function satisfy-
ing these constraints is one linear inqW1, which is to say USF.

Another consequence of the assumption of a uniform state
is that the density and temperature are spatially uniform and
it may be verified that the pressure tensor, heat-flux vector,
number flux, and heating rate are all spatially uniform as
well. The equations for the hydrodynamic fields then become

]

] t
nr = 0,

]

] t
uW = 0W ,

]

] t
T +

2

DnkB
PJ:aJ =

2

DnkB
j, s14d

which shows that the hydrodynamic fields will also be inde-
pendent of time if the viscous heating, characterized by the
second term on the left in the temperature equation, balances
the cooling described by the source term on the right. It is
therefore consistent to hypothesize not only a spatially uni-
form solution to the Enskog equation, but that a time-
independent solution exists. In this steady state, the only two
quantities having the units of time are the temperature and
the shear rate. It will therefore be the case that the relevant
dimensionless control parameter isa* =aÎkmlksl2/kBT,
where the average diameter isksl=orsxrxssrs and the aver-
age mass iskml=orxrmr. For a given set of material param-
eters, the steady state will be unique in that the value ofa* as
determined from Eq.(14) will be independent of the shear
rate a applied through the Lees-Edwards boundary condi-
tions: in other words, for a given value ofa, the temperature
will relax to a value such that the same value ofa* is always
achieved.

Does this mean that once the fluid is moving according to
the linear velocity profile, it will continue to do so forever?
The answer is that it depends on the boundary conditions
which have so far not been specified. The steady-state distri-
bution hypothesized, and the sustained USF it implies, is
only possible if the distribution function is compatible with
some set of boundary conditions. For example, if the system
is bounded with rigid moving walls, then the final distribu-
tion will depend on the detailed dynamics of collisions of
grains with the wall. Here, however, we will assume the
imposition of Lees-Edwards boundary conditions which are
periodic boundaries in the comoving frame. A time-

independent, spatially homogeneous distribution function is
in fact compatible with these boundary conditions and they
are also amenable to application in molecular-dynamics
computer simulations, as discussed in more detail below.

Before turning to the construction of a spatially uniform,
time-independent solution of the Enskog equation, some
comments can be made about the generality of these results.
First, the only properties of the flow state used so far are that
the flow field is a linear function of the coordinate and that
the shear tensor satisfiesaJ·aJ=0 [needed to convert the spa-
tial derivative on the left in Eq.(4) into a velocity derivative
in Eq. (13)]. Second, the Boltzmann equation results from
taking the lowest-order term in an expansion of the integral
in Eq. (13) in terms of the hard-sphere diameter. This results

in the replacement ofvW12→VW 12 so that, in this approxima-
tion, the collision integral is independent of position for any
choice of the flow field.

II. MOMENT SOLUTIONS TO THE ENSKOG EQUATION

A. Moment expansion

In order to develop an approximate solution of the Enskog
equation without making any restrictive assumptions about
the size of either the shear rate or the degree of inelasticity,
the distribution function is expanded in a complete set of
polynomials about some suitable reference state[20,21].
Here, more generally than is usually done, the reference state
will be taken to be an arbitrary Gaussian so that the expan-
sion takes the form

f rsVW ;hnsj,Td = nrdetsGJd1/2p−D/2exps− VW · GJr ·VW d

3So
n=0

1

n! oIn
AIn

r HIn
sÎ2GJr1/2 ·VW dD , s15d

whereGJr is a positive-definite, real, symmetric matrix and an
abbreviated notation is used wherebyIn; i1¯ in. As such, it

can be written, via Cholesky decomposition, asGJr

=GJr1/2·sGJr1/2dT for some matrixGJr1/2. The functions used in
the expansion are the Hermite polynomials[21] given by

HIn
scWd = s− 1dnec2/2 ]

] ci1

¯

]

] cin

e−c2/2 s16d

so that, e.g.,HijscWd=cicj −di j . They are orthonormal inD di-
mensions because

S 1

2p
DD/2E dcW e−c2/2HIn

scWdHJm
scWd = dmn o

Ps j1j2¯ jmd
di1j1

¯ dinjn
,

s17d

whereP(¯) indicates that the sum is over all permutations,
so that the coefficients of the expansion are related to the
velocity moments via

E dVW f rsVW ;hnsj,TdHIn
r sCW rd = nrAIn

r , s18d

whereCW r =Î2GJr1/2·VW . Evaluating Eq.(7) relates the lower-
order coefficients to the hydrodynamic fields as

JAMES F. LUTSKO PHYSICAL REVIEW E70, 061101(2004)

061101-4



nrsqW,td = nrA
r ,

rsqW,tduisqW,td = o
r

mrnrA
rui + o

r
o

j

mrnrsÎ2GJr1/2di j
−1Aj

r ,

DnkBT =
1

2o
r

hmrnrTrfsGJrd−1g

+ mrnrTrfsGJrd−1/2 ·AJr · sGJrTd−1/2gj s19d

implying Ar =1 and oro jmrnrsÎ2GJr1/2di j
−1Aj

r =0. The kinetic
contribution to the stress tensor is

Pij
K = o

r

mr E dVW f rsVW ;hnsj,TdViVj

=
1

2o
r

mrnrfsGJrd−1/2 · s1W + AJrd · sGJrTd−1/2gi j . s20d

Each species has a temperature given by

DnrkBTr = mr E dVW f rsVW ;hnsj,TdV2

=
1

2
hmrnrTrfsGJrd−1g

+ mrnrTrfsGJrd−1/2 ·AJr · sGJrTd−1/2gj. s21d

Calculation of the velocity moments of Eq.(15) shows
that there are actually redundant degrees of freedom in the

sense that any change inGJr can always be compensated by
changes in the coefficients of the expansion. These redundant
degrees of freedom can most conveniently be eliminated by

restricting the form of eitherGJr or AI2
r , although one could

imagine applying the restrictions to higher moments. There

are two cases of particular interest. In the first,GJ is left
unspecified and we setAi1i2

r =0 so that all information about
the second moments comes from the Gaussian. This will be
referred to below as the generalized moment expansion or

GME. In the second case,GJ is specialized to a diagonal
matrix by setting

GJr =
mr

2kBTr
1J, s22d

where the parametersTr are to be determined. In this case,
only the trace of the second-order coefficients is set to zero
so that

o
i

Aii
r = 0. s23d

This represents an expansion about a local equilibrium state
in which the temperatures of the different species are al-
lowed to vary and will be referred to below as the simple
moment expansion or SME. Further tradeoffs between the

degrees of freedom in the reference state and those in the
moment expansion are possible, but do not appear to offer
any qualitative advantages. For example, one could use the
restrictions

GJr =
mr

2kBT
1J,

o
r

o
i

Aii
r = 0, s24d

so that the reference state is simple equilibrium. This possi-
bility will not be considered here, although there is nothing
to rule it out in principle. Note that in no case can we force
the temperatures of the subspecies to be equal since that
would eliminate certain degrees of freedom altogether and
this would lead to inconsistencies when we use the expan-
sion to solve the Enskog equation.

Substituting the general expansion given in Eq.(15) into

the Enskog equation, multiplying byHIn
r1sÎ2GJr11/2·VW 1d, and

integrating over velocities yields an infinite hierarchy of
coupled equations for the moments which are given explic-
itly in Appendix A. Thenth-order approximation is usually
taken to consist of truncating the expansion in Eq.(15) to the
first n terms and using the firstn equations of this hierarchy
to determine the moments. The remainder of this paper will
focus on the simplest nontrivial approximations, which are in
both cases the second-order approximation. For the GME,
some simplification allows the moment approximation to be
written as

] Gi1i2

r1−1

] t
+ asGyi2

r1−1di1x + Gyi1

r1−1di2xd = o
r2

nr2
xr1r2

Ei1i2

r1r2 s25d

with

Ei1i2

r1r2 = − 2p−DdetsGJr1GJr2d1/2E dVW 1dVW 2dqW2V1i1
V1i2

T̄−s12d

3exps− VW 1 · GJr1 ·VW 1 − VW 2 · GJr1 ·VW 2d s26d

and wherexr1r2
;xr1r2

sqW1,qW1+srsq̂12; td is independent ofqW1

and q̂12 in a homogeneous system. This system of equations

suffices to determine the matricesGJr1. For a given applied
shear ratea, the steady-state temperature, and hence the di-
mensionless shear ratea* , is then determined from the sec-
ond moments from Eq.(19). Explicitly, the temperature is
T=orxrTr where the partial temperatures are given by

DkBTr =
mr

2
TrfsGJr1d−1g. s27d

This lowest-order GME corresponds to the “generalized
Maxwellian” approximation of Chouet al. [6,7]. For the
SME, the moment equations are
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]

] t
Ai1i2

r1 +
] ln Tr1

] t
sAi1i2

r1 + di1i2
d + asdxi1

Ai2y
r1 + dxi2

Ai1y
r1 + dxi1

di2y

+ dxi2
di1yd

= o
r2

nr2
xr1r2FBi1i2

r1r2 +
1

2o
j1j2

sCi1i2,j1j2

r1r2 Aj1j2

r1 + Di1i2,j1j2

r1r2 Aj1j2

r2 dG ,

TrsAJr1d = 0 s28d

with

Bi1i2

r1r2 =

−E dVW 1dVW 2dqW2Hi1i2
sCW 1dT̄−s12dFr1

sVW 1;Tr1
dFr2

sVW 2;Tr2
d,

Ci1i2,j1j2

r1r2 = −E dVW 1dVW 2dqW2Hi1i2
sCW 1dT̄−s12dFr1

sVW 1;Tr1
d

3Hj1j2
sCW 1dFr2

sVW 2;Tr2
d,

Di1i2,j1j2

r1r2 = −E dVW 1dVW 2dqW2Hi1i2
sCW 1dT̄−s12d

3Fr1
sVW 1;Tr1

dFr2
sVW 2;Tr2

dHj1j2
sCW 2d,

CW j = S mrj

kBTr j

D1/2

VW j ,

FrsVW 1;Trd = S mr

2kBTrp
DD/2

expS−
mr

2kBTr
V1

2D . s29d

The first of Eqs.(28) are a set of linear equations for the
coefficientsAi1i2

r1 , whereas the second can be thought of as a
set of constraints that serve to determine the partial tempera-
tures.

Finally, one problem with the moment expansion in gen-
eral is that the truncated distributions are not necessarily
positive definite. Anad hocprocedure to rectify this problem
is to resum the truncated moment expansion so that one
writes, in the general case,

f rsVW ;hnsj,Td = nrdetsGJd1/2p−D/2exps− VW · GJr ·VW d

3S1 + o
n

1

n! oIn
AIn

r HIn
sÎ2GJr1/2 ·VW dD

= nrZ
−1p−D/2expS− VW · GJr ·VW

+ o
n

1

n! oIn
ĀIn

r HIn
sÎ2GJr1/2 ·VW dD , s30d

where the new coefficientsĀIn
r are chosen so that the two

series agree, term by term, up to the desired order.(In other
words, the two series differ only in terms of the same order
as the neglected terms.) In general, the normalization con-

stantZ must also be determined. For the second-order GME,
this is not an issue since the approximate distribution is
Gaussian. For the SME, one has that

f rsVW ;hnsj,Td . nrS mr

2kBTr
DD/2

p−D/2expS−
mr

2kBTr
V2D

3S1 +
1

2!oi1i2

Ai1i2
r Hi1i2

sÎ2GJr1/2 ·VW dD
. nrdets1J + AJrd−1/2p−D/2

3expS−
mr

2kBTr
o
i1i2

VW · s1J + AJrd−1 ·VWD
s31d

which is structurally the same as the GME except that the
matrix of second moments is determined through the linear-
ized equations(28) and (29). Thus, in this formulation, the
second-order GME and SME are virtually identical except
for the approximations used to determine the second mo-
ments.

B. Generating function for collision integrals

All of the collision integrals that will be needed can be
obtained from the generating function

ZIn

r1r2 = − p−DE dVW 1dVW 2dqW2Sp
j=1

n

sqW12di jDexpsLW ·VW 1dT̄−s12d

3exps− VW 1 · GJr1 ·VW 1 − VW 2 · GJr2 ·VW 2d s32d

by differentiating with respect to the matricesGi j
r1 andGi j

r2 and

the vectorLi and taking appropriate limits(such asLW →0).
For example, by inspection, one has that

Ei1i2

r1r2 = 2 detsGJr1GJr2d1/2lim
LJ→0J

]2

] Li1
] Li2

Zr1r2,

Bi1i2

r1r2 =
mr1

2kBTr1

lim
GJx→ mx

2kBTx
1J

Ei1i2

r1r2,

Ci1i2,j1j2

r1r2 = −
mr1

2kBTr1

lim
GJx→ mx

2kBTx
1J

detsGJr1GJr2d1/2

3S mr1

kBTr1

]

] Gi j1j2

r1
+ d j1j2D lim

LJ→0J

]2

] Li1
] Li2

Zr1r2

= −
1

2S mr1

kBTr1

D2

lim
GJx→ mx

2kBTx
1J

]

] G j1j2

r1
Ei1i2

r1r2,
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Di1i2,j1j2

r1r2 = −
mr1

2kBTr1

mr2

kBTr2

lim
GJx→ mx

2kBTx
1J

]

] G j1j2

r2
Ei1i2

r1r2, s33d

while with a comparison of Eqs.(10), evaluated for a uni-
form system, and Eq.(B4), the collisional contribution to the
pressure is found to be

Pi1i2
V =

1

4o
r1r2

nr1
nr2

xr1r2
detsGJr1GJr2d1/2mr1

lim
LJ→0J

]

] Li2

Zi1

r1r2.

s34d

The generating function is shown in Appendix B to be

ZIn

r1r2 =
1

2
detsGJr1GJr2d−1/2sr1r2

D−1E dq̂Sp
j=1

n

sr1r2
q̂i jD

3FZ̃r1r2Ss1 + ar1r2
d
mr1r2

mr1

D − Z̃r1r2s0dG s35d

with

Z̃r1r2sxd = Xr1r2
F1S2wr1r2

+ LW · GJr1−1 · q̂12

2Xr1r2

−
1

2
xsLW · q̂dXr1r2

D
3 expS1

4
LW ·GJ r1r2sxd · LW − xwr1r2

LW · q̂D ,

Fnsxd = −
2

Îp
E

−`

−x

su + xdnexps− u2ddu,

Xr1r2
= Îq̂ · sGJr1−1 + GJr2−1d · q̂,

GJ r1r2sxd = GJr1−1 + 2sGJr1 + GJr2d−1 − 2xGJr1−1 · q̂q̂ + x2Xr1r2

2 q̂q̂,

wr1r2
= sr1r2

q̂ ·aJ · q̂, s36d

and, in particular,

F0sxd = erfsxd − 1,

F1sxd =
1

Îp
e−x2

+ xferfsxd − 1g. s37d

(Appendix B also discusses the general case of an arbitrary
flow state.) The elements needed for the second-order mo-
ment equations are worked out in Appendix C, where it is
shown that

Ei1i2

r1r2 = − sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

E dq̂ Xr1r2
F1Swr1r2

Xr1r2

D
3fsGJr1−1 · q̂di1

q̂i2
+ sGJr1−1 · q̂di2

q̂i1
g +

1

2
sr1r2

D−1s1 + ar1r2
d2

3Smr1r2

mr1

D2E dq̂ q̂i1
q̂i2

Xr1r2

3 HSwr1r2

Xr1r2

DF0Swr1r2

Xr1r2

D
+ F1Swr1r2

Xr1r2

DF2Swr1r2

Xr1r2

D2

+ 2GJ s38d

from which immediately follows the coefficients for the
simple moment approximation

Bi1i2

r1r2 = − 2sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2E dq̂ q̂i1
q̂i2

F1Swr1r2

Yr1r2

D
+

1

4
sr1r2

D−1s1 + ar1r2
d2Smr1r2

mr1

D2

Yr1r2

3
mr1

kBTr1

3E dq̂ q̂i1
q̂i2HSwr1r2

Yr1r2

DF0Swr1r2

Yr1r2

D + F1Swr1r2

Yr1r2

D
3F2Swr1r2

Yr1r2

D2

+ 2GJ ,

Ci1i2,j1j2

r1r2 =
Tr1

Tr2

mr2

mr1

Di1i2,j1j2

r1r2 − 2sr1r2

D−1s1 + ar1r2
d

3
mr1r2

mr1

Yr1r2E dq̂sdi1j1
q̂i2

q̂j2
+ di2j1

q̂i1
q̂j2

d

3F1Swr1r2

Yr1r2

D ,

Di1i2,j1j2

r1r2 = − 4sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

−1 SkBTr2

mr2

D
3E dq̂ q̂i1

q̂i2
q̂j1

q̂j2FF1Swr1r2

Yr1r2

D
− Swr1r2

Yr1r2

DF0Swr1r2

Yr1r2

DG
+ 3sr1r2

D−1s1 + ar1r2
d2Smr1r2

mr1

D2 mr1

kBTr1

SkBTr2

mr2

D
3Yr1r2E dq̂ q̂i1

q̂i2
q̂j1

q̂j2
F1Swr1r2

Yr1r2

D , s39d

where
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Yr1r2
=Î2

kBTr1

mr1

+ 2
kBTr2

mr2

, s40d

which, together with Eqs.(21), (25), and (28), and the re-
quirement thatornrTr =nT, complete the specification of the
second-order moment approximations. The collisional contri-
bution to the pressure is

Pi1i2
V = −

1

8o
r1r2

nr1
nr2

sr1r2

D xr1r2
s1 + ar1r2

d

3mr1r2E dq̂ q̂i1
q̂i2

Xr1r2

2 FF0Swr1r2

Xr1r2

D
+ 2

wr1r2

Xr1r2

F1Swr1r2

Xr1r2

DG . s41d

The evaluation of the SME model in the Boltzmann limit,
obtained by expanding in the hard-sphere diameters and
keeping only the leading order[which here amounts to tak-
ing the limit wr1r2

→0 and using F0s0d=−1 and F1s0d
=1/Îp], is performed in Appendix D. For a one-component
system, the GME results are in agreement with Chou and
Richman[6,7] while the Boltzmann limit of the SME is in
agreement, for a one-component system, with the expres-
sions given by Garzo[15]. In this simple case, the angular
integrals can be performed analytically(see Appendix D). It
is remarkable that the structure of the these terms is virtually
identical to the equivalent quantities which occur in the el-
ementary case of the moment solution of the Enskog equa-
tion for USF of elastic hard spheres[13,14]. The practical
result is that it is technically no more difficult to work with
an arbitrary mixture than with a single species.

C. Polydisperse granular fluids

As an extreme example, these results can be generalized
to describe a polydisperse granular fluid in which there is a
continuous distribution of grain sizes, masses, and coeffi-
cients of restitution. This is equivalent to having an infinite
number of species and in general one must supply the distri-
bution of grains among the species, i.e.,xr as well as the
hard-sphere diameters,srir j

, and coefficients of restitution
arir j

. In fact, formally, the species label can be replaced by a
continuous index over some interval, say[0, 1], and sums
over species replaced by integrals over this index. In the
event that each species has a unique hard-sphere diametersr,
and the hard-sphere diameters are additive, i.e.,

srr8 =
1

2
ssr + sr8d, s42d

it makes sense to replace the integrals over species labels by
integrals over the distribution of hard-sphere diameters. Spe-
cifically, the measuresxrdr becomexrsdr /dsdds;xssdds,
wherexssd is the fraction of grains having diameters. The
moment equations then become

n−1ss1d
]

] t
nss1dfGJss1dgi1i2

−1 − ahdi1xfGJss1dgyi2
−1 + di2xfGJss1dgyi1

−1j

= − nE ds2xss2dxSs1 + s2

2
DSs1 + s2

2
DD−1

f1 + ass1,s2dg

3
mss1,s2d

mss1d
Ẽi1i2

ss1,s2d s43d

with

Ẽi1i2
ss1,s2d = −E dq̂ Xss1,s2dF1Swss1,s2d

Xss1,s2d D
3fsGJ−1ss1d · q̂di1

q̂i2
+ sGJ−1ss1d · q̂di2

q̂i1
g

+
1

2
f1 + ass1,s2dg

mss1,s2d
mss1d E dq̂ q̂i1

q̂i2

3X3ss1,s2dHSwss1,s2d
Xss1,s2d DF0Swss1,s2d

Xss1,s2d D
+ F1Swss1,s2d

Xss1,s2d DF2Swss1,s2d
Xss1,s2d D

2

+ 2GJ ,

Xss1,s2d = Îq̂ · fGJ−1ss1d + GJ−1ss2dg · q̂,

wss1,s2d = Ss1 + s2

2
Dq̂ ·aJ · q̂ s44d

and the contributions to the pressure become

Pi1i2
K = nE ds1xss1dfGJss1dgi1i2

−1

Pi1i2
V = −

1

4
n2E ds1ds2xss1dxss2dSs1 + s2

2
DD

xSs1 + s2

2
D

3f1 + ass1,s2dgmss1,s2d E dq̂ q̂i1
q̂i2

X2ss1,s2d

3FF0Swss1,s2d
Xss1,s2d D + 2Swss1,s2d

Xss1,s2d DF1Swss1,s2d
Xss1,s2d DG ,

s45d

where some model forass1,s2d and the massesmss1d must
be supplied. The generalization of the SME expressions is
similarly straightforward. These expressions appear formi-
dable to implement, but if thes integrals are performed us-
ing n-point Gaussian quadratures, thenedsxssdFssd
→oi=1

n wixssidFssid, wherewi are the Gaussian weights and
thesi are determined by the Gaussian abscissas. In this form,
the calculation is identical to that forn species withxri
=wixssid. Thus, numerically, there is no practical difference
between the polydisperse fluid and a mixture withn species.
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III. COMPARISON TO SIMULATION

A. Simulation and numerical methods

In order to evaluate the models presented here, three types
of calculations were performed for three-dimensional sys-
tems: numerical solution of the second-order moment expan-
sions, numerical solution of the Enskog equation by means
of direct simulation Monte Carlo(DSMC), and molecular-
dynamics(MD) simulations. Comparison of the first two elu-
cidates the accuracy of the second-order moment approxima-
tions while comparison of both to the MD indicates the
accuracy of the underlying assumptions, i.e., that the state
obtained is indeed USF and the assumption of molecular
chaos.

The focus here will be on the steady-state properties of
the systems, so that when evaluating the SME and GME
models, the time derivatives are set identically to zero.
Implementation of the(static) SME requires the numerical
evaluation of the coefficients given in Eq.(39) and the solu-
tion of equations(28) for the partial temperatures and the
shear rate as a function of the global temperature and coef-
ficient of restitution[the second-order moments are deter-
mined from Eq.(28) which are linear so that moments may
be taken as given functions of the other parameters]. The
GME requires a similar numerical evaluation of the function
Eij

r1r2 and solution of the nonlinear moment equations, Eqs.
(25) and (27). All numerical calculations were performed
using the Gnu Scientific Library[22]. In all cases, the(two-
dimensional) numerical integrals were calculated using the
GSL routine “qags” (Gauss-Kronrod 21-point integration
rule applied adaptively until the desired accuracy is
achieved) with a specification of relative accuracy of 10−4

and absolute accuracy of 10−6 for the inner integral and 10−3

and 10−6 for the outer integrals. The linear equations for the
SME moments were solved by LU decomposition and the
nonlinear equations for the partial temperatures and shear
rate were solved with the GSL “hybrids” algorithm(Powell’s
hybrid method with numerical evaluation of the Jacobian).
Convergence was considered to be achieved when the sum of
the absolute value of the residuals was less than 10−7. The
same methods and tolerances were used to solve the nonlin-
ear moment equations for the GME.

The second set of calculations performed consisted of the
numerical solution of the Enskog equation by means of the
DSMC method[18]. These calculations were performed us-
ing a cubic cell with sides equal to the maximum of the
hard-sphere diameters, with 105 points and a time step of
Dt=0.0117tmft, wheretmft is the mean free time. All calcu-
lations began from an initial configuration corresponding to
the equilibrium hard-sphere fluid. Shear flow was imposed
by means of Lees-Edwards boundary conditions which are
periodic boundaries in the Lagrangian frame[17]. For each
combination of temperature, shear rates, and coefficients of
restitution, the initial configuration was relaxed over a period
of 100tmft and steady-state statistics, reported below, were
then obtained by averaging over another 100tmft.

Finally, these calculations are compared below to
molecular-dynamics simulations. In all cases, the systems
consisted of 500 grains and the starting configuration was the

equilibrium fluid. Shear flow was again imposed by means of
Lees-Edwards boundary conditions. After turning on the
shear flow and collisional dissipation, the systems were al-
lowed to relax for a period of 53107 collisions after which
statistics were gathered for another 53107 collisions. Errors
were computed by estimating the desired statistics using data
from each period of 105 collisions and calculating the stan-
dard error between the estimates(the same method was used
in the DSMC calculation). In the figures shown below, error
bars are in general not given because in most cases, the es-
timated errors are comparable to or smaller than the size of
the symbols. Exceptions to this(in the case of the tempera-
ture distributions) are explicitly commented upon in the text.
Larger systems were not simulated as they are subject to
various hydrodynamic instabilities which violate the assump-
tion that the state is USF[23,24]. It is important to note that
the MD code only allows for binary collisions: in the event
of clustering, which could lead to higher-order collisions, the
condition is flagged and the code aborts. For the simulations
presented below, this never occurred.

B. Binary mixtures

One check on the expressions given here is to compare to
the results of Montanero and Garzo, who have evaluated the
SME in the Boltzmann limit for a binary mixture and com-
pared to DSMC simulations for a variety of combinations of
mass, diameter, and density ratios. The expressions for the
SME when evaluated fornksl3=0.001, so as to achieve the
Boltzmann limit, do indeed agree well with the data given in
Ref. [25]. A particular case is fors11=s12=s22=1,m1
=10m2,a11=a12=a22=0.75, and x1=x2=0.5, for which
Montanero and Garzo reportPxy

K =−0.498 andPyy
K =0.723

from DSMC simulations andPxy
K =−0.498 andPyy

K =0.743
from their evaluation of the SME in the Boltzmann limit. I
find that the(very low density) SME givesPxy

K =−0.4981 and
Pyy

K =0.7435, in excellent agreement. By comparison, the
GME gives Pxy

K =−0.496 andPyy
K =0.726 and so is in even

better agreement with the DSMC numerical solution of the
Boltzmann equation. In addition, in the same limit, the GME
is able to account for at least some of the normal stress
differences,Pyy

K −Pzz
K , that the SME misses(in the SME in the

Boltzmann limit,Pyy
K =Pzz

K ) but which are clearly nonzero in
the DSMC calculations.

C. Polydisperse model

A simple model was used in which the diameters are ad-
ditive, the masses scale with the diameters in the usual way,

mssd =
4p

3
r0s3, s46d

and the coefficients of restitution are also additive,

ass1,s2d =
1

2
fass1d + ass2dg. s47d

The distribution of diameters was taken to be a simple trian-
gular distribution,

RHEOLOGY OF DENSE POLYDISPERSE GRANULAR… PHYSICAL REVIEW E 70, 061101(2004)

061101-9



xssd = Hu−2ss − 1 +ud, 1 −u , s , 1

u−2s1 + u − sd, 1 , s , 1 + u
J s48d

so that the average diameter is 1 and the polydispersity, de-
fined as the variance divided by the average of the sizes, is
d=s1/Î6du. The coefficients of restitution were assumed to
scale linearly with the diameter with the smallest grains be-
ing hard,ass=1−ud=1, and the largest being soft,ass=1
+ud=a0,1, wherea0 is a free parameter, so that the aver-
age value iskal=s1+a0d /2. The equilibrium pair structure
functionxss1,s2d was evaluated using the approximation of
Ref. [26] and the accuracy of this approximation was verified
in the equilibriumsa0=1d simulations. In all of the calcula-
tions reported here, the integrals over the distribution of
hard-sphere diameters were performed using a Gauss-
Legendre integration scheme with 10 points. Using five
points, the results differed by about 10%. When evaluating
the equations for an equilibriumsa0=1d mixture, the differ-
ence between the 5 and 10 point schemes was also about
10% and the absolute accuracy of the 10 point scheme com-
pared to the known exact results was 1%. The MD and
DSMC simulations were performed with a system obtained
by a random sampling over the distribution of hard-sphere
diameters. A variety of simulations was also performed with
other samplings and it was confirmed that the results re-
ported below do not vary significantly from sample to
sample.

In the following, comparisons will be made for systems at
three densities: a low density fluid,n* ;nks3l=0.1, a mod-
erately dense fluid,n* =0.25, and a dense fluid,n* =0.5. In all
cases, a value ofu=0.5 or polydispersity ofd=20.4% was
used. All results are from a single random sampling of this
distribution. For the DSMC calculations, the large number of
points used means that the distribution is well sampled. For
the MD, however, the relatively small number of atoms
might mean that the results reported below are influenced by
the particular realization used. To control against this, I have
checked a number of data points using multiple independent
samplings from the distribution and confirmed that the varia-
tion induced by different samplings is negligible, at least for
the properties discussed below.

D. Accuracy of the second moments

Figure 1 shows the kinetic part of the stress tensor, or
equivalently the second moments, as obtained from the
SME, the GME, and the DSMC. Comparison with the nu-
merical solution of the Enskog equation, i.e., the DSMC re-
sults, shows that the GME gives a virtually exact estimate of
the second moments at all densities and degrees of inelastic-
ity. It is interesting to note that the difference between theyy
and zz moments, which is zero in the Boltzmann limit(see
Appendix D), is never very great and actually changes sign
at high density. The SME is in close agreement with the
GME. The only significant difference is in theyy and zz
moments where the SME tends to underestimate the differ-
ence between them. Figure 2 compares the GME calculation
to the MD results for the same systems. The calculations are
in excellent agreement with the simulations at low density

and remain reasonable even at the highest density. In particu-
lar, thexy moments are in good agreement at all densities.
These results show that the GME gives an accurate estimate
of the second velocity moments as determined by the Enskog
equation and that the Enskog equation gives a reasonable
approximation to the second moments at all densities inves-
tigated.

E. Accuracy of the second moment approximation

The next question is whether stopping at second moments
is sufficient to accurately approximate the full solution of the
Enskog equation. One measure of this is the calculation of
the collisional contribution to the stress tensor. Figure 3
shows the diagonal components of this quantity as calculated
from the GME and DSMC and measured in the MD simula-
tions. At low density, the agreement between the GME and
DSMC is good, although not quite as good as for the mo-
ments themselves. This shows that although higher-order
moments will give some small contribution, the GME ap-
pears, in this case at least, to be a good approximation to the
solution of the Enskog equation. However, comparison to the
MD shows the shortcomings of the Enskog equation itself.

FIG. 1. The absolute values of the kinetic part of the stress
tensor(i.e., the second moments) normalized tonkBT for three den-
sities as determined by the GME(solid lines), SME (open symbols),
and DSMC(filled symbols). Note that thexy moments are actually
negative.

FIG. 2. Same as Fig. 1, but showing results from the GME
(solid lines) and MD simulations(symbols).
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At low density, agreement is good but even at moderate den-
sity, considerable differences between MD and the Enskog
approximation are apparent, although the latter remains a
reasonable semiquantitative approximation. At the highest
density, the differences become qualitative in nature. In the
MD, the xx component changes nonmonotonically witha0
whereas the Enskog theory predicts a monotonic increase
with increasing inelasticity. Enskog predicts little change in
the yy component, whereas in fact it drops rapidly. Only the
zzcomponent is represented at all reasonably.

F. Viscoelastic properties

Figure 4 shows the dimensionless shear ratea* as a func-
tion of a0 according to the DSMC, GME, and MD. All of
these are in good agreement at all densities and values of
inelasticity. This agreement is also fortunate since it means
that any differences between Enskog and MD are not attrib-
utable to a misestimated shear rate.

Figure 5 shows the pressure(trace of the stress tensor). In
contrast to elastic hard spheres, for which the pressure in-
creases with increasing shear rate[14], the pressure is nearly

constant. The calculations are again all in reasonably good
agreement with the MD. Figure 6 shows the dimensionless
shear viscosity

h* =
Pxy

a
Î ksl4

kBTkml
s49d

and the viscometric functions

c1
* =

P
xx

− Pyy

a2

ksl
kml

,

c2
* =

Pyy − Pzz

a2

ksl
kml

, s50d

which measure the normal stresses. The Enskog theory gives
a very reasonable estimate for all of the viscoelastic proper-
ties. Althoughc1

* is systematically underestimated,c2
* and

the shear viscosity are well approximated at all densities. In
all cases, the errors grow with density and decreasinga0.

G. Temperature distribution

So far, the comparisons have shown the Enskog theory
and the MD to be in good agreement for bulk properties up

FIG. 3. The diagonal components of the collisional contribution
to the stress tensor as a function ofa0 normalized to their equilib-
rium sa0=1d values. The lines are GME, the filled symbols DSMC,
and the open symbols MD.

FIG. 4. The reduced shear ratea* as a function ofa0 as deter-
mined from the GME(lines), DSMC (filled symbols), and MD
(open symbols).

FIG. 5. Same as Fig. 4 but showing the reduced pressurep*

=p/nkBT.

FIG. 6. The reduced shear viscosity and viscometric functions,
as defined in Eqs.(49) and (50) as functions ofa0. The lines are
from the GME and the symbols from MD.
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to n* ø0.25. Even above this density, the physically interest-
ing quantities—the pressure, shear viscosity, and viscometric
functions—are well approximated. This picture changes
when attention focuses on variations of properties with grain
species. Figure 7 shows a comparison of the predicted tem-
perature distribution as a function of grain size according to
the SME, GME, and DSMC for the particular valuea=0.4
as well as the zero-density, Boltzmann limit, prediction. The
SME and GME are again very good approximations to the
numerical results, with the former being slightly more accu-
rate for the smaller grains and the latter more accurate for the
larger grains for which the SME deviates from the Boltz-
mann result too slowly. The surprising result is shown in Fig.
8, which compares the distributions obtained from the GME
and MD simulations. Although reasonable, the Enskog re-
sults are in poor agreement with the MD for the largest
grains, especially at thelower densities and most especially
for n* =0.25. Even more surprisingly, the MD results at lower
densities are in good agreement with the GME approxima-
tion to theBoltzmannequation. The two differences between
the Boltzmann and Enskog theories are that(a) the Enskog
theory has a higher collision frequency due to the prefactor
of the pair distribution function which occurs in the collision
term and(b) the Enskog theory accounts for the nonlocality

of the interactions of the grains in the collision term. It is
hard to imagine that the second point is in error, so it seems
most likely that the Enskog theory is overestimating the col-
lision rate for large grains. Some support for this hypothesis
comes from the fact that setting the pdf to its Boltzmann
limit (i.e., unity) increases the temperature of the largest
grains by about a third of the difference between the Boltz-
mann and Enskog results forn* =0.25. This suggests that
even at low density, the Enskog theory is based on a poor
estimate of the collision rates and so the assumption of mo-
lecular chaos, Eq.(6), is in error. This error is not apparent
when considering the bulk properties because the distribution
of grain sizes is such that the largest grains make a relatively
small contribution to most properties: the largest contribu-
tions come from grains near the middle of the distribution
where the Enskog theory is relatively accurate.

IV. CONCLUSIONS

In this paper, the moment approximation to the solution of
the Boltzmann-Enskog kinetic theory has been generalized
so as to represent an expansion about an arbitrary Gaussian
state. This framework encompasses both the generalized
Maxwellian approximation as well as the simple moment
expansion about local equilibrium as special cases. It shows
in particular how corrections to the generalized Maxwellian
approximation might be calculated.

A generating function technique was also presented as a
simplified means of calculating collision integrals for the
particular case of uniform shear flow. Although the present
calculations were only performed to second order, the gener-
ating function technique would make higher-order calcula-
tions much more feasible than more straightforward meth-
ods. The technique is based on the observation that the
postcollisional velocities of hard spheres are linear functions
of the precollisional velocities so that precollisional Gauss-
ians remain Gaussian and integrals over such functions are
relatively straightforward to perform. This technique is par-
ticularly valuable in anisotropic states, such as USF, where
the usual approach to evaluating collision integrals becomes
very messy. The method should be applicable to many other
types of kinetic theory calculations.

These general methods were applied to the particular case
of arbitrary mixtures of granular fluids. It was shown, by
comparison to DSMC simulations, that both the SME and
the GME are very good approximations to the exact solu-
tions to the Enskog equation for a model polydisperse granu-
lar fluid. The GME tends to be slightly more accurate than
the SME and has the additional advantage that the approxi-
mate distribution is positive definite.

Comparison to MD simulations showed that the Enskog
equation gives a good estimate of bulk properties such as the
temperature, pressure, shear viscosity, and viscometric func-
tions (i.e., normal stresses) over a wide range of coefficients
of restitution and densities. Shear thinning is particularly
well predicted. However, a more detailed examination shows

FIG. 7. The reduced temperature distributionT*ssd=Tssd /T as
a function of grain size,s. The line is from the GME, the filled
symbols from DSMC, the dashed line is the SME, and the dotted
line is from the Boltzmann equation(also in the GME
approximation).

FIG. 8. The reduced temperature distributionT*ssd=Tssd /T as
a function of grain size,s. The full line is from the GME, the open
symbols are from MD, and the dashed line is from the Boltzmann
equation(also in the GME approximation).
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that part of this agreement(particularly in the case of the
viscometric functions) is due to a cancellation of errors while
the description of the variation of temperature with grain size
is in fact rather poor. The fact that this agreement is so poor
even at relatively low densities raises the question of whether
the approximate kinetic theory is fundamentally lacking in
some way. Possible explanations of the errors are that the
local equilibrium pair distribution function is simply inaccu-
rate, that the assumption of molecular chaos is violated, or
that the systems are not actually in a state of USF due, e.g.,
to some sort of segregation process. The exploration of these
possibilities will be the subject of a later work.
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APPENDIX A: MOMENT EQUATIONS

In this appendix, the left-hand side of the moment equa-
tions is developed, first for a general Gaussian state and then
specialized to uniform shear flow. The kinetic equations take
the form

S ]

] t
+ vW ·

]

] qW
D f rsqW1,vW1;td = o

s

Jff r, fsg sA1d

and the distribution is expanded as

f rsqW,VW ;hnsj,Td = nrdetsGJrd1/2p−D/2exps− VW r · GJr ·VW rd

3So
n=0

1

n! oIn
AIn

r HIn
sÎ2GJr1/2 ·VW dD , sA2d

where VW r =vW −uW rsqd. This is slightly more general than the
form given in the text as we allow here for an arbitrary,
species-dependent, linear contribution to the Gaussian. In the
following, all dependence on space and time will not be in-
dicated explicitly, although all quantities do in fact have such
dependence. Furthermore, since we are only interested in the
left-hand side of the equation, which only involves a single
species, the species label will also be suppressed until the
end of the calculation.

The first step is to switch variables fromhqW ,vW ,tj to hqW8
=qW ,Ci =Î2Gi j

1/2sv j −ujd ,t8= tj using

]

] t
=

]

] t8
+

] Ci

] t

]

] Ci

=
]

] t8
+ S ] Gi j

1/2

] t8
G jl

−1/2Cl − Î2Gi j
1/2] uj

] t8
D ]

] Ci
,

]

] ql
=

]

] ql8
+

] Ci

] ql8

]

] Ci
=

]

] ql8
+ S ] Gi j

1/2

] ql8
G jk

−1/2Ck

− Î2Gi j
1/2] uj

] ql8
D ]

] Ci
, sA3d

so that

]

] t
+ vW ·

]

] qW
=

]

] t8
+ S ] Gi j

1/2

] t
G jk

−1/2Ck − Î2Gi j
1/2] uj

] t
D ]

] Ci

+ S 1
Î2

Glm
−1/2Cm + ulDF ]

] ql8
+ S ] Gi j

1/2

] ql8
G jk

−1/2Ck

− Î2Gi j
1/2] uj

] ql8
D ]

] Ci
G . sA4d

Introducing f̃ =dets2GJd−1/2f, the kinetic equation becomes

]

] t8
f̃ + S ] Gi j

1/2

] t
G jk

−1/2Ck − Î2Gi j
1/2] uj

] t
D ]

] Ci
f̃

+ S 1
Î2

Glm
−1/2Cm + ulDF ]

] ql8
+ S ] Gi j

1/2

] ql8
G jk

−1/2Ck

− Î2Gi j
1/2] uj

] ql8
D ]

] Ci
G f̃ +

]

] t8
ln detsGJd1/2

+ S 1
Î2

Glm
−1/2Cm + ulD ]

] ql8
ln detsGJd1/2

= dets2GJrd−1/2o
s

Jff r, fsg. sA5d

The next step is to multiply through byHIn
sCW d and to

integrate overCW . These evaluations are performed using the
basic identities, which follow directly from the definition of
the Hermite polynomials,

CxHIn
sCW d = HxIn

sCW d + SIn
dinxHIn−1

sCW d,

]

] Cx
HIn

sCW d = SIn
dinxHIn−1

sCW d, sA6d

where the operatorSIn
indicates a sum over all inequivalent

permutations of the indicated set of indices. Repeated appli-
cation of these gives

CxCyHIn
sCW d = HInxysCW d + dxyHIn

sCW d + SIn
fdxin

dyin−1
HIn−2

sCW d

+ dxin
HIn−1ysCW d + dyin

HIn−1xsCW dg,

Cy
]

] Cx
HIn

sCW d = SIn
dinxHyIn−1

sCW d + SIn
dinxdin−1yHIn−2

sCW d,
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CzCy
]

] Cx
HIn

sCW d = SIn
dinxSHIn−1zysCW d + dzyHIn−1

sCW d + dzin−1
dyin−2

HIn−3
sCW d

+ dzin−1
HIn−2ysCW d + dyin−1

HIn−2zsCW d
D . sA7d

Combined with the orthonormality of the Hermite polynomi-
als, and integrating by parts where needed, one then has that

n−1E dCW HIn
sCW d f̃sCW d = AIn

,

n−1E dCW CxHIn
sCW d f̃sCW d = AxIn

+ SIn
dinxAIn−1

,

n−1E dCW CyHIn
sCW d

]

] Cx
f̃sCW d

= − dxyAIn
− SIn

dinxsAyIn−1
+ din−1yAIn−2

d,

n−1E dCW CzCyHIn
sCW d

]

] Cx
f̃sCW d

= − SyzdxysAzIn
+ SIn

dinzAIn−1
d

− SIn
dinx„HIn−1zysCW d + dzyHIn−1

sCW d…

− SIn
dinx„Hdzin−1

dyin−2
HIn−3

sCW d + Syzdzin−1
HIn−2ysCW d….

sA8d

Using these, the kinetic equation becomes

nr
−1 ]

] t8
nrAIn

r + nr
−1 ]

] ql8
nrul

rAIn
r − SIn

S ] Ginj
r1/2

] t
G jk
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r
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r1/2

] ql8
G jk
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r
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Glk
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r d

+ Î2SIn
Ginj
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r
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r ] uj
r

] ql8
DAIn−1

r +
1

2

]

] ql8
sG jl

r−1AIn−1

r dG −
1
Î2

SIn
S ] Ginj

r1/2

] ql8
G ji n−2

r−1/2Gli n−1

r−1/2DAIn−3

r + nr
−1 1

Î2

]

] ql8
sGlm

r−1/2nrAmIn
r d

−
1
Î2

SIn
FS ] Ginj

r1/2

] ql8
G jk

r−1/2DGlm
r−1/2AIn−1mk

r G −
1
Î2

SIn
FS ] Ginj

r1/2

] ql8
G jk

r−1/2DGli n−1

r−1/2 + S ] Ginj
r1/2

] ql8
G ji n−1

r−1/2DGlk
r−1/2GAIn−2k

r

= nr
−1detsGJrd−1/2E dCW rHIn

sCW rdo
s

Jff r, fsg. sA9d

The zeroth-order equation gives

nr
−1 ]

] t8
nr + nr

−1 ]

] ql8
nrul

r = 0

so that the general equation becomes

]

] t8
AIn

r + ul
r ]

] ql8
AIn

r − SIn
S ] Ginj

r1/2

] t
G jk

r−1/2 + ul
r
] Ginj
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] ql8
G jk

r−1/2 − Ginj
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r
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Glk

r−1/2DsAkIn−1

r + dkin−1
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r d

+ Î2SIn
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r
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r ] uj
r
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DAIn−1

r +
1

2
nr
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] ql8
snrG jl

r−1AIn−1
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1
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SIn
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r−1/2DAIn−3

r
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−1 1
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] ql8
sGlm

r−1/2nrAmIn
r d −

1
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SIn
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G jk

r−1/2DGlm
r−1/2AIn−1mk

r G −
1
Î2

SIn
FS ] Ginj

r1/2

] ql8
G jk

r−1/2DGli n−1

r−1/2

+ S ] Ginj
r1/2

] ql8
G ji n−1

r−1/2DGlk
r−1/2GAIn−2k

r = nr
−1detsGJrd−1/2E dCW rHIn

sCW rdo
s

Jff r, fsg. sA10d
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Specializing to USF gives

]

] t8
AIn

r − SIn
S ] Ginj

r1/2

] t
G jk

r−1/2 − ajlGinj
r1/2Glk

r−1/2D
3sAkIn−1

r + dkin−1
AIn−2

r d

= nr
−1dets2GJrd−1/2E dCW rHIn

sCW rdo
s

Jff r, fsg

= nr
−1E dVW rHIn

sCW rdo
s

Jff r, fsg. sA11d

For the second-order GME, this gives

−
] Gi2j

r1/2

] t
G ji 1

r−1/2 −
] Gi1j

r1/2

] t
G ji 2

r−1/2 + ajlGi2j
r1/2Gli 1

r−1/2 + ajlGi1j
r1/2Gli 2

r−1/2

= nr
−1E dVW rHIn

sCW rdo
s

Jff r, fsg. sA12d

Multiplying through byGk2i2
r−1/2Gk1i1

r−1/2 and summing overi1 and
i2 gives

] Gk1k2

r−1

] t
+ ak2lGk1l

r−1 + ak1lGk2l
r−1

= nr
−1E dVW ro

I2

Gk2i2
r−1/2Gk1i1

r−1/2HI2
sCW rdo

s

Jff r, fsg

= 2nr
−1E dVW rVk1

Vk2o
s

Jff r, fsg. sA13d

For the second-order SME, one has

]

] t8
AI2

r +
] ln Tr

] t
Ai1i2

r + ai2kAki1
r + ai1kAki2

r +
] ln Tr

] t
di2i1

+ ai2i1

+ ai1i2
= nr

−1 mr

kBTr
E dVW rVk1

Vk2o
s

Jff r, fsg.

APPENDIX B: THE GENERATING FUNCTION

To evaluate the various kinetic integrals, we need the gen-
erating function

Zfng
r1r2 = − p−DE dVW 1dVW 2dqW2Sp

j=1

n

qW12iDexpsLW ·VW 1dT̄−s12d

3exps− VW 1 · GJr1 ·VW 1 − VW 2 · GJr2 ·VW 2d

= p−DE dVW 1dVW 2dqW2Sp
j=1

n

qW12iDexps− VW 1 · GJr1 ·VW 1

− VW 2 · GJr2 ·VW 2dT+s12dexpsLW ·VW 1d, sB1d

where the negative adjoint of the collision operator is

T+s12d = − dsq12 − sr1r2
dQs− vW12 · q̂12dvW12 · q̂12fb̂12 − 1g,

sB2d

and in this appendix, I continue the generalization of Appen-

dix A and allow for an arbitrary flow state so thatVW i =vW i
−uW risqW id. Using

b̂12VW 1 = VW 1 − s1 + ar1r2
d
mr1r2

mr1

svW12 · q̂12dq̂12, sB3d

the generating function is

Zfng
r1r2 = − p−Dsr1r2

D−1E dVW 1dVW 2dq̂Sp
j=1

n

sr1r2
q̂iD

3exps− VW 1 · GJr1 ·VW 1 − VW 2 · GJr2 ·VW 1dQs− vW12 · q̂dsvW12 · q̂d

3FexpSLW ·VW 1 − s1 + ar1r2
d
mr1r2

mr1

svW12 · q̂dLW · q̂12D
− expsLW ·VW 1dG . sB4d

It is enough to restrict attention to the function

Z̃r1r2sxd = − 2 detsGJr1GJr2d1/2p−DE dVW 1dVW 2Qs− vW12 · q̂d

3svW12 · q̂dexps− g12d,

g12 = − VW 1 · GJr1 ·VW 1 − VW 2 · GJr2 ·VW 2 + LW ·VW 1 − xsvW12 · q̂dLW · q̂12

sB5d

in terms of which the full generating function is

Zfng
r1r2 =

1

2
sr1r2

D−1detsGJr1GJr2d−1/2E dq̂Sp
j=1

n

sr1r2
q̂iD

3FZ̃rsSs1 + ar1r2
d
mr1r2

mr1

D − Z̃rss0dG . sB6d

The velocity integrals are performed by switching to rela-
tive and center-of-mass(CM) coordinates

vW = VW 1 − VW 2,

VW =
mr1

mr1
+ mr2

VW 1 +
mr2

mr1
+ mr2

VW 2, sB7d

so that

VW 1 = VW +
mr1r2

mr1

vW ,

VW 2 = VW −
mr1r2

mr2

vW . sB8d

In terms of the CM variables, the argument of the exponen-
tial is expanded by first using
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− VW 1 · GJr1 ·VW 1 − VW 2 · GJr2 ·VW 2

= − VW · sGJr1 + GJr2d ·VW − vW ·FSmr1r2

mr1

D2

GJr1

− Smr1r2

mr2

D2

GJr2G ·vW

− 2VW ·Smr1r2

mr1

GJr1 −
mr1r2

mr2

GJr2D ·vW sB9d

and the remaining terms become

LW ·VW 1 − xsvW12 · q̂12dLW · q̂ = LW ·VW +
mr1r2

mr1

LW ·vW − xsLW · q̂dvW · q̂

− xwr1r2
LW · q̂, sB10d

where wr1r2
;fuW r1sqW1d−uW r2sqW1−sr1r2

q̂dg ·q̂ (in USF, wr1r2

=sr1r2
q̂·aJ·q̂). The first step is to complete the square inVW ,

− VW · sGJr1 + GJr2d ·VW − 2VW ·Smr1r2

mr1

GJr1 −
mr1r2

mr2

GJr2D ·vW + LW ·VW

= − sVW + AW d · sGJr1 + GJr2d · sVW + AW d + AW · sGJr1 + GJr2d ·AW

sB11d

with

AW = vW ·Smr1r2

mr1

GJr1 −
mr1r2

mr2

GJr2D · sGJr1 + GJr2d−1

−
1

2
LW · sGJr1 + GJr2d−1 sB12d

giving

g12 = − sVW + AW d · sGJr1 + GJr2d · sVW + AW d + AW · sGJr1 + GJr2d ·AW

− vW ·FSmr1r2

mr1

D2

GJr1 − Smr1r2

mr2

D2

GJr2G ·vW +
mr1r2

mr1

LW ·vW

− xsLW · q̂dvW · q̂ − xwr1r2
LW · q̂. sB13d

This can be simplified by expanding the second term and
using

FSmr1r2

mr1

GJr1 −
mr1r2

mr2

GJr2D ·vWG · sGJr1 + GJr2d−1 ·FSmr1r2

mr1

GJr1

−
mr1r2

mr2

GJr2D ·vWG − vW ·FSmr1r2

mr1

D2

GJr1 − Smr1r2

mr2

D2

GJr2G ·vW

= − vW · GJr2 · sGJr1 + GJr2d−1 · GJr1 ·vW sB14d

so that

g12 = − sVW + AW d · sGJr1 + GJr2d · sVW + AW d − vW · GJr2 · sGJr1

+ GJr2d−1 · GJr1 ·vW − LW · sGJr1 + GJr2d−1 ·Smr1r2

mr1

GJr1

−
mr1r2

mr2

GJr2D ·vW +
1

4
LW · sGJr1 + GJr2d−1 · LW +

mr1r2

mr1

LW ·vW

− xsLW · q̂dvW · q̂ − xwr1r2
LW · q̂. sB15d

Furthermore,

LW · sGJr1 + GJr2d−1 ·Smr1r2

mr1

GJr1 −
mr1r2

mr2

GJr2D ·vW

= Smr1r2

mr1

DLW ·vW − LW · sGJr1 + GJr2d−1 · GJr2 ·vW sB16d

so

g12 = − sVW + AW d · sGJr1 + GJr2d · sVW + AW d − vW · GJr2 · sGJr1

+ GJr2d−1 · GJr1 ·vW + LW · sGJr1 + GJr2d−1 · GJr2 ·vW +
1

4
LW · sGJr1

+ GJr2d−1 · LW − xsLW · q̂dvW · q̂ − xwr1r2
LW · q̂. sB17d

Next, we complete the square invW using

− vW · GJr2 · sGJr1 + GJr2d−1 · GJr1 ·vW + LW · sGJr1 + GJr2d−1 · GJr2 ·vW

− xsLW · q̂dvW · q̂

= − vW · sGJr1−1 + GJr2−1d−1 ·vW

+ fLW · sGJr1 + GJr2d−1 · GJr2 − xsLW · q̂dq̂g ·vW

= − svW + BW d · sGJr1−1 + GJr2−1d−1 · svW

+ BW d + BW · sGJr1−1 + GJr2−1d−1 ·BW , sB18d

where

BW = −
1

2
LW · sGJr1 + GJr2d−1 · GJr2 · sGJr1−1 + GJr2−1d

+
1

2
xsLW · q̂dq̂ · sGJr1−1 + GJr2−1d

= −
1

2
LW · GJr1−1 +

1

2
xsLW · q̂dq̂ · sGJr1−1 + GJr2−1d sB19d

giving

g12 = − sVW + AW d · sGJr1 + GJr2d · sVW + AW d − svW + BW d · sGJr1−1

+ GJr2−1d−1 · svW + BW d + BW · sGJr1−1 + GJr2−1d−1 ·BW +
1

4
LW · sGJr1

+ GJr2d−1 · LW − xwr1r2
LW · q̂. sB20d

Then, using
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E expf− sVW + AW d · sGJr1 + GJr2d · sVW + AW dgdVW

= detsGJr1 + GJr2d−1/2E exps− V2ddVW

= pD/2detsGJr1 + GJr2d−1/2 sB21d

gives

Z̃r1r2sxd = − 2 detsGJr1GJr2d1/2pD/2detsGJr1 + GJr2d−1/2

3E duW Qs− uW · q̂ + BW · q̂ − wr1r2
d

3suW · q̂ − BW · q̂ + wr1r2
dexpf− uW · sGJr1−1 + GJr2−1d−1 ·uWg

3expFBW · sGJr1−1 + GJr2−1d−1 ·BW +
1

4
LW · sGJr1

+ GJr2d−1 · LW − xwr1r2
LW · q̂G . sB22d

Next, expanding

BW · sGJr1−1 + GJr2−1d−1 ·BW +
1

4
LW · sGJr1 + GJr2d−1 · LW

=
1

4
LW ·GJ r1r2sxd · LW sB23d

with

GJ r1r2sxd = GJr1−1 + 2sGJr1 + GJr2d−1 − xsGJr1−1 · q̂q̂ + q̂GJr1−1 · q̂d

+ x2Xr1r2

2 q̂q̂,

Xr1r2

2 = q̂ · sGJr1−1 + GJr2−1d · q̂ sB24d

gives

Z̃r1r2sxd = − 2 detsGJr1GJr2d1/2p−D/2detsGJr1 + GJr2d−1/2

3E duW Qs− uW · q̂ + BW · q̂ − wr1r2
d

3suW · q̂ − BW · q̂ + wr1r2
dexpf− uW · sGJr1−1 + GJr2−1d−1 ·uWg

3expF1

4
LW ·GJ r1r2sxd · LW − xwr1r2

LW · q̂G . sB25d

The velocity integral is performed using

E duW Qs− uW · q̂ + BW · q̂ − wr1r2
dsuW · q̂ − BW · q̂ + wr1r2

dexps− uW · MJ ·uWd

= detsMJ d−1/2E duW8Qs− uW8 · MJ −1/2 · q̂ + BW · q̂ − wr1r2
dsuW8 · MJ −1/2 · q̂ − BW · q̂ + wr1r2

dexps− u82d

= detsMJ d−1/2psD − 1d/2uMJ −1/2 · q̂uE
−`

sBW ·q̂−wr1r2
d/uMJ −1/2·q̂u Su8 −

BW · q̂ − wr1r2

uMJ −1/2 · q̂u
Dexps− u82ddu8

= −
1

2
detsMJ d−1/2pD/2uMJ −1/2 · q̂uF1Swr1r2

− BW · q̂

uMJ −1/2 · q̂u
D , sB26d

where

Fnsxd ; −
2

Îp
E

−`

−x

su8 + xdexps− u82ddu8 sB27d

so that

F0sxd = erfsxd − 1,

F1sxd =
1

Îp
e−x2

+ xferfsxd − 1g. sB28d

Noting that usGJr1−1+GJr2−1d1/2·q̂u=Xr1r2
and detfsGJr1−1

+GJr2−1d−1g−1/2=detsGJr1d−1/2detsGJr2d−1/2detsGJr1+GJr2d1/2, one
has that

Z̃r1r2sxd = F1Swr1r2
− BW · q̂

uMJ −1/2 · q̂u
DexpS1

4
LW ·GJ r1r2sxd · LW

− xwr1r2
LW · q̂D . sB29d
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The final result is then summarized as

Zfng
r1r2 =

1

2
detsGJr1GJr2d−1/2sr1r2

D−1E dq̂Sp
j=1

n

sr1r2
q̂i jD

3FZ̃r1r2Ss1 + ar1r2
d
mr1r2

mr1

D − Z̃r1r2s0dG sB30d

with

Z̃r1r2sxd = Xr1r2
F1S2wr1r2

+ LW · GJr1−1 · q̂12

2Xr1r2

−
1

2
xsLW · q̂dXr1r2

D
3 expS1

4
LW ·GJ r1r2sxd · LW − xwr1r2

LW · q̂D ,

Xr1r2
= Îq̂ · sGJr1−1 + GJr2−1d · q̂,

GJ r1r2sxd = GJr1−1 + 2sGJr1 + GJr2d−1 − 2x GJr1−1 · q̂q̂ + x2Xr1r2

2 q̂q̂,

wr1r2
= fuW r1sqW1d − uW r2sqW1 − sr1r2

q̂dg · q̂. sB31d

In this calculation, it has been implicitly assumed that

GJr1,GJr2 and nr1
,nr2

are independent of position. However,
this assumption is unnecessary and the same result applies
for spatially dependent quantities provided the substitutions

GJr1 → GJr1sqW1d,

GJr2 → GJr2sqW1 − sr1r2
q̂d, sB32d

etc., are made and quantities involvingq̂ are brought under
the integrals.

APPENDIX C: EVALUATION OF THE COLLISION
INTEGRALS

In this appendix, the generating function is used to evalu-
ate the coefficients of the moment expansions.

1. Evaluation of Ei1i2
r1r2

We need

Ei1i2

r1r2 = 2 detsGJr1GJr2d1/2lim
LW →0

]2

] Li1
] Li2

fZ̃r1r2sxd − Z̃r1r2s0dg,

sC1d

which is evaluated using

lim
LW →0

]2

] Li1
] Li2

Z̃r1r2sxd

= Xr1r2
F19Swr1r2

Xr1r2

DSGJr1−1 · q̂

2Xr1r2

D
i1

SGJr1−1 · q̂

2Xr1r2

D
i2

+ Xr1r2
F1Swr1r2

Xr1r2

D1

2
Gi1i2

r1r2sxd −
1

2
xXr1r2F1

2
F19Swr1r2

Xr1r2

D
+ Swr1r2

Xr1r2

DF18Swr1r2

Xr1r2

DGfsGJr1−1 · q̂di1
q̂i2

+ sGJr1−1 · q̂di2
q̂i1

g + x2Xr1r2

3 FS1

2
D2

F19Swr1r2

Xr1r2

D
+ Swr1r2

Xr1r2

DF18Swr1r2

Xr1r2

D + Swr1r2

Xr1r2

D2

F1Swr1r2

Xr1r2

DGq̂i1
q̂i j

.

sC2d

Substituting the explicit expression forGJsxd gives

lim
LW →0

]2

] Li1
] Li2

fZ̃r1r2sxd − Z̃r1r2s0dg = Z̃r1r2Sx,
wr1r2

Xr1r2

D
Z̃r1r2sx,yd = −

1

2
xXr1r2

F1

2
F19syd + yF18syd + F1sydG

3fsGJr1−1 · q̂di1
q̂i2

+ sGJr1−1 · q̂di2
q̂i1

g

+ x2Xr1r2

3 FS1

2
D2

F19syd + yF18syd + y2F1syd

+
1

2
F1sydGq̂i1

q̂i j
sC3d

so that, usingFn8sxd=nFn−1sxd+dn02fF1sxd−xF0sxdg, one has

Z̃r1r2sx,yd = − xXr1r2
F1sydfsGJr1−1 · q̂di1

q̂i2
+ sGJr1−1 · q̂di2

q̂i1
g

+
1

2
x2Xr1r2

3 fyF0syd + s2y2 + 2dF1sydgq̂i1
q̂i j

sC4d

and

Ei1i2

r1r2 = − sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

E dq̂ Xr1r2
F1Swr1r2

Xr1r2

D
3fsGJr1−1 · q̂di1

q̂i2
+ sGJr1−1 · q̂di2

q̂i1
g +

1

2
sr1r2

D−1s1 + ar1r2
d2

3Smr1r2

mr1

D2E dq̂ q̂i1
q̂i2

Xr1r2

3 HSwr1r2

Xr1r2

DF0Swr1r2

Xr1r2

D
+ F1Swr1r2

Xr1r2

DF2Swr1r2

Xr1r2

D2

+ 2GJ . sC5d
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2. Evaluation of Bi1i2
r1r2

This follows by taking the appropriate limit ofEi1i2
r1r2:

Bi1i2

r1r2 =
mr1

2kBTr1

lim
GJx→smx/2kBTxd1J

Ei1i2

r1r2

= − 2sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2E dq̂ q̂i1
q̂i2

F1Swr1r2

Xr1r2

D
+

1

4
sr1r2

D−1s1 + ar1r2
d2Smr1r2

mr1

D2

Yr1r2

3
mr1

kBTr1

E dq̂ q̂i1
q̂i2

3HSwr1r2

Yr1r2

DF0Swr1r2

Yr1r2

D + F1Swr1r2

Yr1r2

D
3F2Swr1r2

Yr1r2

D2

+ 2GJ sC6d

with

Yr1r2
=Î2

kBTr1

mr1

+ 2
kBTr2

mr2

. sC7d

3. Evaluation of Di1i2,j1j2
r1r2

We need to evaluate

Di1i2,j1j2

r1r2 = −
mr1

2kBTr1

mr2

kBTr2

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r2
detsGJr1GJr2d1/2Ei1i2

r1r2

= sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

mr1

2kBTr1

mr2

kBTr2

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r2
E dq̂ Xr1r2

F1Swr1r2

Xr1r2

DfsGJr1−1 · q̂di1
q̂i2

+ sGJr1−1 · q̂di2
q̂i1

g

−
1

4
sr1r2

D−1s1 + ar1r2
d2Smr1r2

mr1

D2 mr1

kBTr1

mr2

kBTr2

3 lim
GJx→smx/2kBTxd1J

]

] G j1j2

r2
E dq̂ q̂i1

q̂i2
Xr1r2

3 HSwr1r2

Xr1r2

DF0Swr1r2

Xr1r2

D + F1Swr1r2

Xr1r2

D
3F2Swr1r2

Xr1r2

D2

+ 2GJ . sC8d

Then, using

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r2
Xr1r2

= −
1

2
Yr1r2

−1 S2kBTr2

mr2

D2

q̂j1
q̂j2

sC9d

gives

Di1i2,j1j2

r1r2 = sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

mr1

2kBTr1

mr2

kBTr2

4kBTr1

mr1

3E dq̂ q̂i1
q̂i2

q̂i18
q̂i28F−

1

2
Yr1r2

−1 S2kBTr2

mr2

D2G
3F lim

GJx→smx/2kBTxd1J

]

] Xr1r2

Xr1r2
F1Swr1r2

Xr1r2

DG −
1

4
sr1r2

D−1s1 + ar1r2
d2Smr1r2

mr1

D2 mr1

kBTr1

mr2

kBTr2

E dq̂ q̂i1
q̂i2

q̂j1
q̂j2F

−
1

2
Yr1r2

−1 S2kBTr2

mr2

D2G 3 S lim
GJx→smx/2kBTxd1J

]

] Xr1r2

Xr1r2

3 HSwr1r2

Xr1r2

DF0Swr1r2

Xr1r2

D + F1Swr1r2

Xr1r2

DF2Swr1r2

Xr1r2

D2

+ 2GJD .

sC10d
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Using

]

] X
X F1Sw

X
D = F1Sw

X
D − Sw

X
DF0Sw

X
D ,

]

] X
X3HSw

X
DF0Sw

X
D + F1Sw

X
DF2Sw

X
D2

+ 2GJ = 6X2F1Sw

X
D

sC11d

gives

Di1i2,j1j2

r1r2 = − 4sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

−1 SkBTr2

mr2

D
3E dq̂ q̂i1

q̂i2
q̂j1

q̂j2FF1Swr1r2

Yr1r2

D
− Swr1r2

Yr1r2

DF0Swr1r2

Yr1r2

DG + 3sr1r2

D−1s1 + ar1r2
d2

3Smr1r2

mr1

D2 mr1

kBTr1

SkBTr2

mr2

DYr1r2

3E dq̂ q̂i1
q̂i2

q̂j1q̂j2
F1Swr1r2

Yr1r2

D . sC12d

4. Evaluation of Ci1i2,j1j2
r1r2

This calculation is very similar to the preceding one. Not-
ing that in the previous calculation we had

S mr1

kBTr1

DS mr2

kBTr2

D lim
GJx→smx/2kBTxd1J

]

] G j1j2

r2
Xr1r2

= − 2Yr1r2

−1 q̂j1
q̂j2S mr1

kBTr1

DSkBTr2

mr2

D , sC13d

whereas from the definition

Ci1i2,j1j2

r1r2 = −
1

2S mr1

kBTr1

D2

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r1
Ei1i2

r1r2

sC14d

the present calculation will require

S mr1

kBTr1

D2

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r1
Xr1r2

= − 2Yr1r2

−1 q̂j1
q̂j2

,

sC15d

we can immediately write

Ci1i2,j1j2

r1r2 = S mr2

kBTr2

DSkBTr1

mr1

DDi1i2,j1j2

r1r2 +
1

2S mr1

kBTr1

D2

3sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

3E dq̂ F1Swr1r2

Yr1r2

D lim
GJx→smx/2kBTxd1J

]

] G j1j2

r1

3fsGJr1−1 · q̂di1
q̂i2

+ sGJr1−1 · q̂di2
q̂i1

g. sC16d

Using

lim
GJx→smx/2kBTxd1J

]

] G j1j2

r1
GJi1i18

r1−1
= − lim

GJx→smx/2kBTxd1J
GJi1j1

r1−1GJ j2i18
r1−1

= − S m1

2kBT1
D−2

di1j1
d j2i18

sC17d

gives

Ci1i2,j1j2

r1r2 = S mr2

kBTr2

DSkBTr1

mr1

DDi1i2,j1j2

r1r2 − 2sr1r2

D−1

3s1 + ar1r2
d
mr1r2

mr1

Yr1r2E dq̂sdi1j1
q̂i2

q̂j2

+ di2j1
q̂i1

q̂j2
dF1Swr1r2

Yr1r2

D
3fdi1j1

q̂j2
q̂i2

+ di2j1
q̂j2

q̂i1
gG j1j2

r1−1. sC18d

5. Evaluation of the pressure

Recall that the collisional part of the pressure is given by

Pi1i2
V =

1

4o
r1r2

nr1
nr2

xr1r2
detsGJr1GJr2d1/2mr1

lim
LJ→0J

]

] Li2

Zi1

r1r2.

sC19d

Starting with

lim
LJ→0J

]

] Li2

Z̃r1r2sxd = Xr1r2
F18Swr1r2

Xr1r2

DSGJr1−1 · q̂12

2Xr1r2

−
1

2
xXr1r2

q̂D
i2

+ Xr1r2
F1Swr1r2

Xr1r2

Ds− xwr1r2
q̂i2

d sC20d

gives

lim
LW →0

]

] Li2

fZ̃r1r2sx;GJr1,GJr2,LW d − Z̃r1r2s0;GJr1,GJr2,LW dg

= −
1

2
q̂i2

xXr1r2

2 FF18Swr1r2

Xr1r2

D + 2
wr1r2

Xr1r2

F1Swr1r2

Xr1r2

DG
sC21d

and
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Pi1i2
V = −

1

8o
r1r2

nr1
nr2

sr1r2

D xr1r2
s1 + ar1r2

d

3mr1r2E dq̂ q̂i1
q̂i2

Xr1r2

2 FF0Swr1r2

Xr1r2

D
+ 2

wr1r2

Xr1r2

F1Swr1r2

Xr1r2

DG . sC22d

APPENDIX D: SME IN THE BOLTZMANN LIMIT

The Boltzmann limit of the coefficients needed for the
SME is

Bi1i2

r1r2 = − sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

1
Îp

Yr1r2F2 −
1

2
s1 + ar1r2

d

3Smr1r2

mr1

DYr1r2

2
mr1

kBTr1

G E dq̂ q̂i1
q̂i2

,

Ci1i2,i18i28
r1r2 =

Tr1

Tr2

mr2

mr1

Di1i2,j1j2

r1r2 − 2sr1r2

D−1s1 + ar1r2
d

3
mr1r2

mr1

Yr1r2

1
Îp

E dq̂sdi1i18
q̂i2

q̂i28
+ di2i18

q̂i1
q̂i28

d,

Di1i2,i18i28
r1r2 = − 4sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

−1 SkBTr2

mr2

D 1
Îp

3F1 −
3

4
s1 + ar1r2

dSmr1r2

mr1

D mr1

kBTr1

Yr1r2

2 G
3E dq̂ q̂i1

q̂i2
q̂i18

q̂i28
, sD1d

where

Yr1r2
=Î2

kBTr1

mr1

+ 2
kBTr2

mr2

. sD2d

Using the elementary integrals

E dq̂ q̂i1
q̂i2

=
SD

D
di1i2

,

E dq̂ q̂i1
q̂i2

q̂i18
q̂i28

=
SD

D2 + 2D
sdi1i2

di18i28
+ di1i18

di2i28
+ di1i28

di18i2
d,

sD3d

where the area of a sphere inD dimensions is

SD =
2pD/2

GsD/2d
sD4d

gives

Bi1i2

r1r2 = Br1r2di1i2
,

Ci1i2,i18i28
r1r2 =

Tr1

Tr2

mr2

mr1

Di1i2,j1j2

r1r2 + Cr1r2sdi1i18
di2i28

+ di2i18
di1i28

d,

Di1i2,i18i28
r1r2 = Dr1r2sdi1i2

di18i28
+ di1i18

di2i28
+ di1i28

di18i2
d,

Br1r2 = − sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

1
Îp

Yr1r2F2 −
1

2
s1 + ar1r2

d

3Smr1r2

mr1

DYr1r2

2
mr1

kBTr1

GSD

D
,

Cr1r2 = − 2sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

1
Îp

SD

D
,

Dr1r2 = − 4sr1r2

D−1s1 + ar1r2
d
mr1r2

mr1

Yr1r2

−1 SkBTr2

mr2

D 1
Îp
F1 −

3

4
s1

+ ar1r2
dSmr1r2

mr1

D mr1

kBTr1

Yr1r2

2 G SD

D2 + 2D
, sD5d

so that

Di1i2,i18i28
r1r2 Ai18i28

r2 = 2Dr1r2Ai1i2

r2 ,

Ci1i2,i18i28
r1r2 Ai18i28

r1 = 2
Tr1

Tr2

mr2

mr1

Dr1r2Ai1i2

r1 + 2 Cr1r2Ai1i2

r1 . sD6d

Then, the moment equations become

2aAxy
r1dix = nBr1 + no

r2

Dr1r2Aii
r2 + nHr1Aii

r1,

a + aAyy
r1 = no

r2

Dr1r2Axy
r2 + nHr1Axy

r1 , sD7d

where

Br1 = o
r2

Br1r2,

Hr1 = o
r2

FTr1

Tr2

mr2

mr1

Dr1r2 + Cr1r2G .

Clearly, allAii
r1 are equal fori Þx and the tracelessness means

that Axx
r1 =−sD−1dAyy

r1. Then

Hr1Ayy
r1 = − Br1 − o

r2

Dr1r2Ayy
r2 ,

2aAxy
r1 = nDBr1,

a2 = n2D

o
r2

Dr1r2Br2 + Hr1Br1

2 + 2Ayy
r1

,
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T = o
r

xrTr , sD8d

which constituten+n+n+1=3n+1 equations for the un-
knownshAyy

r1 ,Axy
r1 ,Tr1

jr1=1
n ,a. For a one-component fluid, one

has that

Yr1r2
→ 2ÎkBT

m
,

Br1 → − s1 − a2d
SD

D
sD−1ÎkBT

pm
,

Dr1r1 → s1 + ad
1 + 3a

2

SD

D2 + 2D
sD−1ÎkBT

pm
,

Hr1 → s1 + adS1 + 3a

2

1

D + 2
− 2DSD

D
sD−1ÎkBT

pm
,

sD9d

and Eqs.(D8) can be solved explicitly with the result that

Ayy = −
s1 − adsD + 2d
3 − 3a + 2D

,

a*Axy = − n*s1 − a2d
SD

2Îp
,

a* = n* SD

D
Î D

2p
s3 − 3a + 2DdÎ s1 − a2ds1 + ad

sD + 2dfD + 1 +asD − 1dg
,

sD10d

where

a* = aÎms2

kBT
,

n* = nsD. sD11d

Recall that in this approximation

Pij
K = nkBTs1W + AJrd sD12d

so that

Pyy = nkBTS1 + D + sD − 1da
3 + 2D − 3a

D ,

Pxy = − nkBTF 1

s3 − 3a + 2Dd

3ÎDSD + 2

2
Ds1 − adfD + 1 +asD − 1dgG ,

h = − Pxy/a = h0S 1

3 − 3a + 2D
D24DfD + 1 +asD − 1dg

s1 + ad
sD13d

with

h0 = s1−DÎmkBTS sD + 2dGsD/2d
8psD−1d/2 D . sD14d

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Phys. Today
49(4), 32 (1996).

[2] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259(1996).

[3] C. S. Campbell, Annu. Rev. Fluid Mech.22, 57 (1990).
[4] J. T. Jenkins and M. W. Richman, J. Fluid Mech.192, 313

(1988).
[5] N. Sel, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids8,

2337 (1996).
[6] C.-S. Chou and M. W. Richman, Physica A259, 430 (1998).
[7] C.-S. Chou, Physica A287, 127 (2001).
[8] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys.87, 1051

(1997).
[9] T. P. C. van Noije and M. H. Ernst, Granular Matter1, 57

(1998).
[10] J. F. Lutsko, J. Chem. Phys.120, 6325(2004).
[11] J. F. Lutsko, Phys. Rev. Lett.77, 2225(1996).
[12] J. F. Lutsko, Phys. Rev. E63, 061211(2001).
[13] J. F. Lutsko, Phys. Rev. Lett.78, 243 (1997).

[14] J. F. Lutsko, Phys. Rev. E58, 434 (1998).
[15] V. Garzo, Phys. Rev. E66, 021308(2002).
[16] M.-L. Tan and I. Goldhirsch, Phys. Fluids9, 856 (1997).
[17] A. Lees and S. Edwards, J. Phys. C5, 1921(1972).
[18] J. M. Montanero and A. Santos, Phys. Rev. E54, 438 (1996).
[19] H. van Beijeren and M. H. Ernst, Physica(Amsterdam) 68,

437 (1973).
[20] S. Chapman and T. G. Cowling,Mathematical Theory of Non-

uniform Gases (Cambridge University Press, Cambridge,
1970).

[21] C. Truesdell and R. Muncaster,Fundamentals of Maxwell’s
Kinetic Theory of a Simple Monoatomic Gas(Academic, New
York, 1980).

[22] The GNU scientific library, http://sources.redhat.com/gsl.
[23] J. D. Goddard and M. Alam, Part. Sci. Technol.17, 69 (1999).
[24] J. F. Lutsko, e-print cond-mat/0403551.
[25] J. M. Montanero and V. Garzo, Physica A310, 17 (2002).
[26] A. Santos, S. B. Yuste, and M. L. de Haro, J. Chem. Phys.117,

5785 (2002).

JAMES F. LUTSKO PHYSICAL REVIEW E70, 061101(2004)

061101-22


